Using ND Measurements to Improve Expected FD Event Rate

Brett Viren

Physics Department

Local MINOS Meeting

Outline

1 The NuMI-B-781 Method

- 2 The Matrix (Method) Reloaded
 - Some Formalism
 - English, Please

Basic Idea

- Recognize that neutrinos in the ND and FD come from the same hadron decays.
- Correlate ND and FD event spectra
- Apply correlation to measured ND spectrum
- In principle, reduces beam related uncertainties (hadron production, target/horn geometries)

Method as I understand it

1) For each GNUMI neutrino, fill the 2D histogram bin holding E_{ν}^f, E_{ν}^n weighted by:

$$M_{E_{\nu}^{n},E_{\nu}^{f}} = \int_{E_{\nu}^{n}}^{E_{\nu}^{n}+\Delta E_{\nu}} dE_{\nu}^{FD} \int_{E_{\nu}^{f}}^{E_{\nu}^{f}+\Delta E_{\nu}} dE_{\nu}^{ND} \frac{W_{h}^{FD}(\vec{r},\vec{p},E_{\nu}^{FD})\sigma_{cc}(E_{\nu}^{FD})}{W_{h}^{ND}(\vec{r},\vec{p},E_{\nu}^{ND})\sigma_{cc}(E_{\nu}^{ND})}$$
(1)

- *h* Hadron $(\pi \text{ or } k)$
- \vec{r}, \vec{p} hadron decay parameters
 - ${\it W}$ probability for decay to produce neutrino at ND/FD detector with

The NuMI note states that one should form a ratio of integrals, not an integral of ratios. I think this is just a LATEX-o.

Method as I understand it, continued

- 2) Measure reconstructed ν_{μ} CC "like" energy spectrum in the ND, binned to match the 2D matrix just formed: $N_{E_{reco}}^{ND, exp}$
- 3) Multiply to get expected FD E_{reco} spectrum.

$$N_{E_{reco}}^{FD,exp} = M_{E_{\nu}^{n},E_{\nu}^{f}} N_{E_{reco}}^{ND,exp}$$
 (2)

Perceived Problems with this Method

- Ad-hoc, or at best, not fully described/understood.
- Applies E_{ν} matrix to E_{reco} vector.
- Ignores:
 - Detector response
 - Reconstructed energy resolution
- ν_{μ} CC (or at least single-interaction) specific. Want to apply to beam-related ν_{e} background which has multiple sources.

Now, try to get this....

What GNUMI does

From NuMI-B-781, neutrino energy distribution at i^{th} detector due to hadron type h.

$$\Phi_{i}(E_{\nu}) = \int F_{h}(\vec{h_{0}}, \vec{p}) P_{h}(\vec{h_{0}}, \vec{p}, \vec{r}) W_{h}(\vec{h_{0}}, \vec{p}, \vec{r}; E_{\nu}) dh_{0} d\vec{p} d\vec{r}$$
(3)

Parameters:

 $\vec{h_0}$ Initial hadron location and direction just after last horn.

 \vec{p}, \vec{r} Hadron momentum, location at decay point

Functions:

 F_h Hadron distribution just after last horn

 P_h Probability initial hadron will decay at \vec{r} and \vec{p}

 W_h Probability this hadron will produce ν with E_{ν} at i^{th} detector.

4□ > 4□ > 4 = > 4 = > = 900

Matricize

Integrate over nuisance $\vec{h_0}$ and small bins of E_{ν} and $\vec{h} = (\vec{p}, \vec{r})$ to give a matrix form:

$$\vec{\Phi}_{i,E_{\nu}} = T_{hi}\vec{H} \tag{4}$$

Where,

 \vec{H} is a multi-rank vector holding the binned distribution of parent hadrons over the space \vec{h}

 T_{hi} is a transfer matrix that takes \vec{H} to:

 $\vec{\Phi}_{i,E_{\nu}}$ is the binned ν flux spectrum at the i^{th} detector.

Note:

- ullet is independent from what detector. This is the correlation we want to exploit.
- T_{hi} is simply analytical.
- There is actually one such equation per parent hadron and neutrino type.

2005/11/30

What Everything Else Does

Model Interaction + Detector + Reconstruction + Cuts as

$$M_{E_{reco}, E_{\nu}}^{\nu, \sigma, c, i, s} \tag{5}$$

In general one *M* for each:

- u neutrino type
- σ interaction type
- c Reconstruction classification (signal or background)
- i Detector (near or far)
- s Data source (real data, simulated MC)

Binned event spectrum at the i^{th} detector:

$$\vec{N}_{E_{reco}}^{i,s,c} = \sum M_{E_{reco},E_{\nu}}^{\nu,\sigma,c,i,s} \vec{\Phi}_{i,E_{\nu}} \tag{6}$$

|ロト 4回 ト 4 E ト 4 E ト 9 Q C・

The Formal Method

(For simplicity, consider one ν, σ and c.)

Predict ND reconstructed neutrino energy spectrum:

$$\vec{N}_{E_{reco}}^{n,MC} = M_{E_{reco},E_{\nu}}^{n,MC} \vec{\Phi}_{n,E_{\nu}} \tag{7}$$

② Assert $\vec{N}_{E_{reco}}^{n,data} \equiv \vec{N}_{E_{reco}}^{n,MC}$ and claim to measure flux at ND and recall flux comes from decaying hadrons:

$$\vec{\Phi}_{n,E_{\nu}}^{meas} = \left(M_{E_{reco},E_{\nu}}^{n,MC}\right)^{-1} \vec{N}_{E_{reco}}^{n,data} = T_{hn}\vec{H}$$
 (8)

ullet Solve for $ec{H}$ (exploit the corelation!) and claim to measure far flux

$$\vec{\Phi}_{f,E_{\nu}}^{meas} = T_{hf} T_{hn}^{-1} \left(M_{E_{reco},E_{\nu}}^{n,MC} \right)^{-1} \vec{N}_{E_{reco}}^{n,data} \tag{9}$$

<ロ > ∢母 > ∢差 > ∢差 > 差 め < 0

Some Obvious Caveats

- Asserting $\vec{N}_{E_{reco}}^{n,data} \equiv \vec{N}_{E_{reco}}^{n,MC}$ to measure the ND flux trusts that our MC is good and our reco is same between MC and data! How to estimate systematics here?
- Need to have a $\vec{\Phi}_{f,E_{
 u}}^{\textit{meas}}$ for each parent hadron type, neutrino type.
- Still need to get to $\vec{N}_{E_{reco}}^{f,meas}$. Probably just re-weight reconstructed MC events via $\vec{\Phi}_{f,E_{\nu}}^{meas}/\vec{\Phi}_{f,E_{\nu}}^{MC}$.

How to actually do this?

$$\vec{\Phi}_{f,E_{\nu}}^{meas} = T_{hf} T_{hn}^{-1} \left(M_{E_{reco},E_{\nu}}^{n,MC} \right)^{-1} \vec{N}_{E_{reco}}^{n,data}$$
 (10)

 T_{hf} : The transport matrix is exactly calculable. It is only a little ungainly being such a high rank matrix.

 T_{hn}^{-1} : Ditto. Inverting might prove tricky?

 $\left(M_{E_{reco},E_{\nu}}^{n,MC}\right)^{-1}$: Simple, fill a 2D histogram with reconstructed ND GMINOS events.

 $\vec{N}_{E_{reco}}^{n,data}$ Even easier, fill 1D histogram from reconstructed ND data.

ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ . 횽 . 쒸٩@